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Client and Project Overview

Project Background  |

• Data analytics start-up headquartered in 
Charlottesville

• Operates in the academic publishing 
industry

• Utilizes proprietary CDP to collect first-
party data across clients' online content

Project Background

• Academic publishing industry is now 
experiencing the big data revolution

• Greater understanding of user 
engagement patterns has massive 
business implications

• Enhance and optimize the inefficient peer 
reviewer selection process

Goal: Engineer a novel set of user-level features and construct a model to accurately 

recognize high-quality, valuable users early on in their lifecycles
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Data

Project Background  |

• First-Party Customer Data

• Significant events and user behavior

• From March 2022 to March 2023: roughly 
2.2M users and 13.4M user events

• Focused on 3 tables

• Engineered 4 main features

• Cloud Access through Snowflake

• Pipeline hosted on Amazon Web Services 
(AWS)

EVENTS PROFILES CONTENT

Articles per Event

% of Articles
from Google

% of Content 
that are Articles

Event Density

Page View

Content Reads

Content TypeProfile ID

TimestampAccess Point
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Data Pipeline

Project Background  |

Data accessed 
from Snowflake

Engineering on 
AWS SageMaker

New Features 
stored on AWS S3

Modeling on
AWS SageMaker
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Cluster Analysis

02.
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Clustering

Cluster Analysis  |

• Problem: No industry standard for what 
constitutes a high-quality user

• Needed to define our own training labels

• Solution: Labeled users via K-means 
clustering analysis

• Found that the two clusters represented 
higher- and lower-quality users

• Clusters can be used to identify peer 
reviewer targets

Run K-Means Clustering

80%20%
Higher 

Quality
Lower 

Quality

3

Prepare Clustering Data2

Derive features from full 

lifetime of user activity

Filter Full Database

Filter out new users with 

too little activity

1

~130K Users
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User Profiles
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Deep Learning Implementation

03.
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Deep Learning Model Structure

Deep Learning Implementation  |

Hidden Layers Predicted 

Output

Inputs

Feat. 
1

Feat. 
2

Feat. 
3

Feat. 
4

Predicts 

probability of 

belonging to 

each cluster

• Built a deep learning MLP model 
to assign each user to a cluster

• Used same features as with 
clustering, but only derived from 
early user activity

• Structure enables Hum to 
customize model for other 
clients and new applications
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Results

Training Curve ROC Curve Confusion Matrix

95%
Test Accuracy

0.96
AUC

91%
TPR & 

TNR

98%
PPV

70%
NPV

Shows effectiveness of model training 
and ability for model to classify users

Shows diagnostic capability of classifier
(scale: [0,1]; higher is better)

Shows classification accuracy and 
misclassification types

A
cc

u
ra

cy

Epoch

Deep Learning Implementation  |
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Concluding Remarks
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Current State & Next Steps

Concluding Remarks  |

Project Impacts

• Found that user lifetime behavior can be 
predicted very early on

• Constructed a robust model 
framework that can be easily extended to 
other academic publishers

• Classified user engagement with high 
accuracy based on novel features

Future Applications

• Identify potential peer reviewers based 
solely on reading behaviors

• Tailor recommended content and ads 
based on user activity

• Incorporate information for other clients 
and more granular user data
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Thank you for your time!
We hope you enjoyed.


	Slide 1: Engagement Time Machine
	Slide 2: Griffin McCauley
	Slide 3: Project Background
	Slide 4: Project Background
	Slide 5: Client and Project Overview
	Slide 6: Data
	Slide 7: Data Pipeline
	Slide 8: Cluster Analysis
	Slide 9: Clustering
	Slide 10: User Profiles
	Slide 11: Deep Learning Implementation
	Slide 12: Deep Learning Model Structure
	Slide 13: Results
	Slide 14: Concluding Remarks
	Slide 15: Current State & Next Steps
	Slide 16: Acknowledgements
	Slide 17: Thank you for your time! We hope you enjoyed.

